Saaristomeren tutkimuslaitos

Kenttäasema täynnä tarinoita

Tag: monitorointi (page 1 of 2)

Puutiaistutkimusta Seilissä – puutiaisten aktiivisuuteen vaikuttavien tekijöiden jäljillä

Puutiais- eli punkkitutkimusta on tehty Seilin saarella yhtäjaksoisesti jo vuodesta 2012, eikä tämäkään kesä tuo poikkeusta. Puutiaisten keruu aloitetaan vuosittain keväällä, jolloin lämpötilat alkavat nousta. Viimeiset keruut tehdään yleensä lokakuussa. Tutkimuksen kautta on saatu paljon uutta tietoa muiden muassa lajin kantamista taudinaiheuttajista, puutiaisille suotuisista elinympäristöistä sekä näiden aktiivisuusvaihteluista saarella. Lisätietoa näistä ja puutiaistutkimuksesta julkaistuista artikkeleista on saatavilla esimerkiksi Turun yliopiston Puutiaisprojektin internetsivuilla.

Varjoisa havumetsä on suotuisa ympäristö puutiaisille. Kuva: Niko Tanski

Seilissä puutiaisia havaitaan lukumäärällisesti eniten varjoisista metsistä. Varjoisuus merkitsee yleensä ilmankosteuden parempaa säilymistä, ja metsä onkin siten suotuisa ympäristö puutiaisille. Laji pyrkii välttämään liian kuivia olosuhteita. Tällöin se hakeutuu maanpinnan tasolle esimerkiksi lehtikarikkeen sekaan ja odottaa olosuhteiden muuttumista. Mustikkavaltaisissa havumetsissä taas esimerkiksi sammaleet pitävät ilmankosteuden korkeana maanpinnan tasolla. Laji kuitenkin siirtyy paikasta toiseen lähinnä kiinnittyneenä toiseen eläimeen. Tultuaan kylläiseksi se pudottautuu takaisin maanpinnalle. Tämän vuoksi yksittäinen puutiainen voi löytyä lähes mistä tahansa ympäristöstä, josta jokin eläin on kulkenut.

Tyypillinen puutiaisen suosima elinympäristö. Kuva: Niko Tanski

Puutiaisella on kolme kehitysvaihetta: toukka, nymfi ja aikuinen. Jokaisessa kehitysvaiheessa puutiainen tarvitsee veriaterian. Nymfivaiheen puutiainen voi selvitä jopa parisen vuotta ilman veriateriaa, joten tämän alkukesän kaltainen pitkä kuiva kausi ei välttämättä ole näille kohtalokas. Kuivuus voi kuitenkin hetkellisesti vähentää näiden aktiivisuutta.

Tänä keväänä tehty selvitys vahvistaa oletukset siitä, että ilmankosteudella ja lämpötiloilla on yhteyttä puutiaisten aktiivisuusvaihteluihin. Seilissä kerätyn aineiston osalta tutkittiin, vaikuttavatko puutiaisten keruuajankohtaa edeltäneet säähavainnot lajin aktiivisuuteen. Tulokseksi saatiin, että keruuhetkeä edeltäneen viikon keskilämpötila ja sademäärä vaikuttivat erityisesti nymfien ja aikuisten aktiivisuuteen. Toukkien osalta lähinnä edeltäneen viikon keskilämpötilalla oli vaikutusta tuloksiin. Sade yleensä nostaa hetkellisesti ilmankosteutta, mikä puolestaan aktivoi puutiaisia. Korkeat lämpötilat eivät suoranaisesti suosi puutiaisia, mutta keväisin ja syksyisin lämpimät olosuhteet saattavat pidentää puutiaisten aktiivisuuskautta. Lämpötilakehitystä ja sademäärätietoja seuraamalla voidaan jatkossa mahdollisesti ennustaa karkeasti Seilin saaren puutiaismääriä tiettynä ajanhetkenä. Kyseinen ennustemalli ei sellaisenaan anna olosuhteiden vaihdellessa ennustetta tulevaisuuteen, kuten koko kesälle, mutta voi osaltaan selittää kyseisen hetken havaintoja.

Samalla on hyvä kuitenkin muistaa, että sää on vain yksi puutiaisten aktiivisuuteen vaikuttavista tekijöistä. Puutiaisten kannalta on ensisijaisen tärkeää, että alueella esiintyy riittävästi isäntäeläimiä, joista ne voivat imeä verta. Näin ollen esimerkiksi myös myyräkantojen vaihtelulla voi olla vaikutusta havaittuihin puutiaismääriin. Seilissä kerätyn aineiston perusteella voidaan kuitenkin sanoa, että säätekijöilläkin on selvästi vaikutusta puutiaisten aktiivisuuteen.

Teksti ja kuvat: Niko Tanski, Turun yliopiston Puutiaisprojektin projektityöntekijä

Lue myös:

Näin tunnistat puutiaisen ja määrität kalan iän

Puutiaistutkimusta tieteen ja tarinoiden saarella

Silakan rasvapitoisuus ei ole sama kuin ennen ja se johtuu muuttuneista ympäristöolosuhteista

Mikä mahdollistaa silakan menestyksen Itämeren omalaatuisessa ympäristössä, jossa suolapitoisuus on alhainen ja vaihtelee alueellisesti ja ajallisesti? Kysymys on askarruttanut läpi silakkaprojektimme reilun 30-vuotisen historian ja askarruttaa edelleen vaikka tiedämme silakan elosta Saaristomerellä nykyään paljon enemmän kuin mitä projektin alkuaikoina. Tällä viikolla otimme yhden askeleen kohti tämän moniosaisen palapelin ratkaisua, kun Turun yliopiston Biokemian laitoksen kanssa toteutettu tutkimuksemme hyväksyttiin julkaistavaksi Canadian Journal of Fisheries and Aquatic Sciences -lehdessä. Tutkimuksessa tarkastelimme Saaristomerellä kutevan silakan lihasrasvavarastojen vaihtelua vuosina 1987-2006 ja 2013-2014.

Rasvavarastot vaikuttavat kalan kaikissa elämänvaiheissa, niiden antama energia mahdollistaa muun muassa lisääntymisen, kasvun ja selviytymisen epäedullisina ajankohtina. Ilmastonmuutoksen aiheuttamien ympäristömuutosten odotetaan muuttavan kalojen energiapitoisuutta (fysiologisten vaikutusten ja ravinnon muutosten kautta), mikä tekee aiheen tutkimisesta mielenkiintoista. Useimmat kalat varastoivat rasvaa huonon päivän varalle lihaksiinsa tai sisäelimiinsä. Saaristomeren rysäkalastajilta saamamme silakkanäytteet osoittivat, että touko-kesäkuussa Saaristomeren matalille rannoille kutemaan saapuvien silakoiden lihasrasvapitoisuus laski keskimäärin 45% (5-6 prosentista 1.5 prosenttiin tuorepainosta). Sama suuntaus havaittiin myös niiden silakoiden rasvoissa, jotka Selkämeren sijaan talvehtivat Saaristomerellä. Havaittua muutosta selittävät parhaiten meriveden makeutuminen ja Selkämeren silakkakannan voimakas kasvu. Myös talvikauden (tammi-huhtikuu) veden lämpötilan nousu oli yksi rasvapitoisuuden pienentymistä selittävä tekijä.

Matkalla kohti Selkämerta. Tutkijat Mikael Elfving ja Marjut Rajasilta Seili 1-veneen kyydissä matkalla eteläiselle Selkämerelle keräämään tutkimuksessa hyödynnettyjä eläinplanktonnäytteitä. Kuva: Katja Mäkinen.

Vaikka rasvapitoisuuden laskun ja suolapitoisuuden, lämpötilan ja populaatiokoon välisiä syy-seuraussuhteita ei voidakaan havaintoaineistostamme päätellä (tähän pystyvät vain kokeelliset tutkimusasetelmat), on kuitenkin selvää, että noin 20-vuotta kestäneen tutkimusjakson aikana silakan elinympäristö on muuttunut. Vuoden 1987 jälkeen pintaveden suolapitoisuus on laskenut Selkämerellä noin 10 prosenttia ja meriveden lämpötila talvikaudella noussut keskimäärin 1.5 asteen verran. Silakoiden lihasrasvapitoisuuden lasku saattaakin liittyä kasvaneeseen energiankulutukseen: veden makeutumisen seurauksena silakat joutuvat käyttämään enemmän energiaa ruumiinsa nestetasapainon säätelyyn (osmoregulaatioon) ja talvien lämpenemisen vuoksi energiaa kuluu myös muun muassa lisääntyneeseen uintiaktiivisuuteen. Rasvapitoisuuden suuri yksilöiden välinen vaihtelu ja Selkämeren silakkakannan kasvu viittaavat myös siihen, että kalat joutuvat kilpailemaan aiempaa enemmän ravinnosta.

On mahdollista, että makean veden hankajalkainen Limnocalanus macrurus on yksi syy silakan rasvojen hyvään laatuun ja, toisaalta myös silakkakannan kasvuun Selkämerellä. Kala on sitä, mitä se syö.

Silakka

Saaristomeren silakoita. Kuva: Johannes Sahlsten

Mielenkiintoista oli havaintomme, että vaikka lihasrasvan määrä on laskenut, oli rasvojen laatu sen sijaan pysynyt hyvänä ja jopa parantunut aiempiin tutkimuksiin verrattaessa (Linko ym. 1985). Tutkimamme silakat sisälsivät paljon tärkeitä omega-3 rasvahappoja EPA:a ja DHA:ta sekä muita monityydyttämättömiä rasvahappoja (engl. Polyunsaturated fatty acids; PUFA). On mahdollista, että suolapitoisuuden laskusta Selkämerellä yleistynyt makenveden hankajalkainen Limnocalanus macrurus on yksi syy silakan rasvojen hyvään laatuun ja, toisaalta myös silakkakannan kasvuun Selkämerellä. Kala on sitä, mitä se syö. Toisin kuin kasvit ja muut omavaraiset eliöt, toisenvaraiset eliöt eivät pysty itse tuottamaan ns. tärkeitä rasvahappoja (engl. Essential fatty acids, EFA) vaan ne täytyy saada ravinnosta. Limnocalanus on saalislajiksi otollinen runsautensa, suuren kokonsa ja suurien rasvavarastojensa vuoksi (Mäkinen ym. 2017). Se myös sisältää paljon hyviä rasvahappoja sisältäviä vahaestereitä. Vuonna 2015 julkaistussa tutkimuksessamme (Rajasilta ym. 2015) osoitimme, että Limnocalanus on Selkämerellä suosittu ja tärkeä saalislaji touko-kesäkuussa, ajankohtana jolloin kalat valmistautuvat kutemaan.

Mitä merkitystä muutoksilla on?

Rasvat ovat vesiekosysteemien pääpolttoaine. Korkea rasvapitoisuus muun muassa parantaa selviytymistä ja mahdollistaa lisääntymisen epäedullisina aikoina. Lihasrasvapitoisuuden lasku voi jatkuessaan siten vaikeuttaa esimerkiksi silakan lisääntymismenestystä. Tämä ei kuitenkaan ole varmaa, sillä toisaalta rasvojen hyvä laatu (tärkeät rasvahapot, EFA) on lisääntymisen onnistumisen kannalta rasvapitoisuutta tärkeämpi tekijä. Selkämerellä tapahtuneet ympäristömuutokset voivat tässä mielessä olla silakan kannalta suotuisia, koska rasvojen laatu näyttää parantuneen.

Selkein merkki Itämeren muuttuneista energiavirroista on silakan koon pieneneminen viimeisten vuosikymmenien aikana. Koon pienentyminen on yksi tapa vähentää energiankulutusta, mutta kalat voivat mahdollisesti myös säästää energiaa muilla tavoin, esimerkiksi muuttamalla vaellusreittejään tai pidättäytymällä lisääntymästä kunnes energiavarastot ovat elpyneet. Silakkakannan rasvapitoisuuden pieneneminen ei  vaikuta pelkästään silakoihin vaan lihasrasvapitoisuuden lasku yhdessä siitä seuranneiden ilmiöiden kanssa voi  mahdollisesti vaikuttaa laajemmin ravintoverkossa – silakka on tärkeä saalislaji esimerkiksi lohikaloille, harmaahylkeelle kuin myös monille merilinnuillekin. Silakka on myös yksi kaupallisen kalastuksen tärkeimmistä saalislajeista. Konkreettisimmin silakan kääpiöityminen ja laihtuminen näkyykin ruokalautasella: 1980-luvun alussa Airistolta kalastettu nelivuotias silakka oli keskimäärin 21-senttinen, nyt noin 16-senttinen. Vastaavasti paino oli 80-luvulla keskimäärin 45 grammaa, nyt noin 25 grammaa.

Lihasrasvapitoisuuden laskulla voi toisaalta olla positiivisiakin vaikutuksia. Esimerkiksi PCB:t ja dioksiinit ovat rasvaliukoisia yhdisteitä ja rasvapitoisuuden lasku on voinut osaltaan vähentää näiden aineiden määriä silakoissa vaikka alentuneet pitoisuudet silakassa heijastavat myös toki aineiden pitoisuuksien pienentymistä ympäristössä.

Julkaisu:

Rajasilta, M., Hänninen, J., Laaksonen, L., Laine, P., Suomela, J.-P., Vuorinen, I. & Mäkinen, K. 2018. Influence of environmental conditions, population density, and prey type on the lipid content in Baltic Herring (Clupea harengus membras) from the northern Baltic Sea. Canadian Journal of Fisheries and Aquatic Sciences (hyväksytty julkaistavaksi)

Muut lähteet:

  • Linko, R. R., Kaitaranta, J. K,. & Vuorela, R. 1985. Comparison of the fatty acids in Baltic herring and available plankton feed. Comp. Biochem. Physiol. 82B: 699–705.
  • Mäkinen, K., Elfving, M., Hänninen, J., Laaksonen, L., Rajasilta, M., Vuorinen, I., & Suomela, J. P. 2017. Fatty acid composition and lipid content in the copepod Limnocalanus macrurus during summer in the southern Bothnian Sea. Helgoland Marine Research71(1), 11. Linkki tutkimukseen
  • Rajasilta, M., Hänninen, J., & Vuorinen, I. 2015. Decreasing salinity improves the feeding conditions of the Baltic herring (Clupea harengus membras) during spring in the Bothnian Sea, northern Baltic. ICES J. Mar. Sci. 71(5): 1148-1152. Doi:10.1093/icesjms/fsu047. Linkki tutkimukseen
  • Rajasilta, M. 2014. Kutupaikkojen kartoituksesta kalakannan vaihteluiden syihin – 30 vuotta silakkatutkimusta. Seili – Saaristomeren tutkimusta 50 vuotta. s. 81-98.

Lue lisää:

Silakkaprojektin kotisivut (englanniksi)

Uusien tutkimuslaitteiden avulla uutta tietoa Itämerestä

Korkeatasoinen, ympärivuotinen merentutkimus ja sen opetus tarvitsee hyviä tutkimuslaitteita ja toimivan tutkimusinfrastruktuurin.  FINMARI eli kansallisen merentutkimuksen infrastruktuuriverkosto kehittää alan toimijoiden yhteistyötä tutkimuslaitteiden, tukipalveluiden sekä mallien ja tietovarantojen käytössä Suomessa ja kansainvälisesti. FINMARI-rahoituksen avulla myös Seiliin on voitu hankkia monia uusia tutkimusvälineitä. Tässä blogipostauksessa esittelemme muutamia näistä.

Henkilön Saaristomeren tutkimuslaitos - Turun yliopisto kuva.

Viime viikolla vierailimme kahden päivän ajan FINMARI Tutkijapäivillä, jotka järjestettiin kolmatta kertaa Tvärminnen eläintieteellisellä asemalla (Helsingin yliopisto). Tutkimuspäivillä esittelimme viimeisimpiä tutkimusprojektejamme ja kuulimme mitä tutkimusta tehdään tällä hetkellä muissa FINMARI konsortion yhteistyöorganisaatioissa. Kuvassa laitoksen preparaattorinakin toiminut Markus Weckström esittelee osallistujille gradututkimustaan. Mikromuoviin keskittyvän tutkielman aineistonkeräys toteutettiin osin FINMARI-rahoitetun välineistön avulla. Lue Markuksen näytteenottomatkasta täällä

Mikä on FINMARI?

FINMARI (Finnish Marine Research Infrastructure) on vuonna 2013 perustettu kansallisen merentutkimuksen infrastruktuuriverkosto, jota koordinoi Suomen ympäristökeskuksen (SYKE) merikeskus. FINMARI kehittää alan toimijoiden yhteistyötä tutkimuslaitteiden, tukipalveluiden sekä mallien ja tietovarantojen käytössä Suomessa ja kansainvälisesti.

Suomen Akatemian rahoittamaan konsortioon kuuluu tutkimuslaitoksia (Syke, Luonnonvarakeskus, Geologian tutkimuskeskus ja Ilmatieteenlaitos), yliopistoja (Helsingin yliopisto, Turun yliopisto ja Åbo Akademi) sekä yksi valtio-omisteinen yritys (Arctia shipping). Laajalle alueelle ulottuva verkosto koostuu kenttäasemista, tutkimusaluksista, jäänmurtajista, laboratoriotiloista, mm. matkustaja- ja kauppalaivoihin kiinnitettävistä ferrybox-järjestelmistä sekä kiinteistä tutkimusalustoista ja poijuista.

Turun yliopiston Saaristomeren tutkimuslaitoksen tutkimusalus r/v Aurelia on osa FINMARI-infrastruktuuria. 18,1 m pitkä alus pitää sisällään pienen vesi- ja kuivalaboratorion, useita erilaisia tutkimusvälineitä (mm. CTD-noudin, GEMAX ja Van Veen sedimenttinäytteenottimet,  läpivirtausfluorometri ja akustinen Doppler-virtausmittari (ADCP) ja sedimenttikaikuluotain).  Kesällä 2017 r/v Aureliaan lisättiin myös näytteenottoa helpottava A-puomi. Tutkimusalus liikkuu pääasiassa Saaristomeren alueella, johon se soveltuu rakenteensa puolesta erinomaisesti. Lue lisää aluksesta kotisivuillamme

Viime vuosina Seilin tutkimuslaitteistokokoelmaa ovat rikastuttaneet muun muassa Hydro-Bios Multinet Mini planktonhaavi sekä Manta-haavi. Multinet sisältää viisi 100 um silmäkoolla varustettua planktonhaavia. Haavi mahdollistaa 1-5 vertikaalisen tai horisontaalisen planktonnäytteet ottamisen joko samanaikaisesti tai peräkkäin ja siten tehostaa planktonnäytteenottoa merkittävästi. 335 um silmäkoolla varustetulla Manta-haavilla voidaan sen sijaan kerätä mikromuovia ja planktonia pintavesistä.

Multinet käyttövalmiina r/v Aurelian kannella. Kuvassa näkyy myös vuonna 2017 alukseen lisätty A-puomi.

Näytteenottoa Manta-haavilla. Tiesitkö, että Manta-haavi on nimetty paholaisrauskun mukaan (Manta ray)?

Vuonna 2015 Seiliin hankittiin FINMARI-rahoituksella 10 kuvassa olevaa akvaarioräkkiä. Jokainen räkki sisältää 12 monipuoliseen kokeelliseen tutkimukseen soveltuvaa akvaariota . Viime aikoina akvaarioita on käytetty muun muassa tutkimuksessa, jossa selvitettiin suolapitoisuusmuutosten vaikutuksia rakkolevän perimässä (Fucus vesiculosus).

Vuodesta 2016 lähtien Seilissä vierailevat yliopiston kenttäkurssit ja lukiolaiset ovat voineet tutkia merestä kerättyjä eliöitä uusien, tehokkaalla valaistuksella  ja suurennoksella varustettujen stereomikroskooppien avulla.

Keväällä Seilin laitteisto kasvaa mataliin rannikkovesiin soveltuvalla viistokaikuluotainjärjestelmä, jonka avulla voidaan tutkia esimerkiksi kalojen lisääntymisalueiden pohjamorfologiaa. Luotain mahdollistaa myös uudet tutkimusavaukset esimerkiksi meriarkeologian parissa.

 

 

 

Saaristomeren talvi – kurkistus jäätyneen pinnan alle

Seili post quay
Seiliä ympäröivä merivesi on pakkaspäivien ansiosta alkanut viimein jäätyä ja veden lämpötila näyttää postilaiturilla noin 0 astetta. Mutta mitä tapahtuu jäätyneen pinnan alla? Seilissä ympäristön seurantaa tehdään vuoden ympäri ja Päiväluodon näytteenottopisteellä käydään mahdollisuuksien mukaan myös talvikuukausina. Tällä kertaa avaamme hieman sitä mitä Seilin lähivesiltä kerätyt vesi- ja eläinplanktonnäytteet kertovat pinnan alla tapahtuvista vuodenaikaismuutoksista.

Seili postilaituri

Seilin postilaiturin sumuiset maisemat perjantaina 9.2.2018

Saaristomeren vesin on kesäisin kerrostunut lämpötilan mukaan. Syksyllä pintavesi tulee jäähtyessään raskaammaksi ja painuu syvemmälle sekoittaen samalla vesipatsasta syvyyssuuntaisesti. Syksyn myrskyt sekoittavat vesimassaa lisää ja lopulta lämpötilan harppauskerros eli termokliini hajoaa ja vesipatsas sekoittuu kauttaaltaan. Tämän jokavuotisen prosessin seurauksena Seilin pohjoispuolella sijaitsevalla 50 metriä syvällä ympäristöseurantapisteellä vesi on talvisin tasaisen kylmä pinnasta pohjaan. Myös meriveden suolapitoisuus on talvisin pinnasta pohjaan noin 6‰ luokkaa. Saaristomeren keskisyvyys on vain 23 metriä, minkä vuoksi alueelle ei synny varsinaista suolapitoisuuden harppauskerrosta eli halokliiniä, joka estäisi veden sekoittumisen.

ODAS Seili

Vuoden 2017 suolapitoisuus- ja lämpötilaprofiilit Päiväluodon näytteenottoasemalla. Kuvista nähdään hyvin vesipatsaan syksyinen sekoittuminen. Vedenlaadun vuodenaikaisia muutoksia voit seurata sivulla Saaristomeri.utu.fi. Keväällä tietojen yhteyteen lisätään myös poijussa olevan sääaseman tiedot.

31.1.2018 CTD-profiili

Tammi-helmikuun vaihteessa Ilmatieteenlaitoksen  CTD-sondilla  (vasemmalla; CTD = Conductivity-Temperature-Depth) vesipatsaasta otettu syvyysprofiili (oikealla). Punainen viiva näyttää vesipatsaan lämpötilan (°C), vihreä suolapitoisuuden (PSU) ja sininen ja violetti happipitoisuuden (ml/L) ja saturaatioprosentin (%). Kuva: STL & IL.

Meriveden jäähtymisen ja tarjolla olevan ruoan määrän vähenemisen myötä useat Itämeren eläinplanktonlajeista  viettävät talvensa joko toukkavaiheina tai pohjasedimentissä lepomunina. Joidenkin lajien aikuisvaiheita tavataan kuitenkin planktonnäytteissä pienissä määrin myös talvikuukausina. Näistä yleisimpiä ovat Itämeren runsaimpiin ja yleisimpiin hankajalkaislajeihin kuuluvat Acartia bifilosa ja Eurytemora affinis. Näiden lisäksi  näytteissä havaitaan jonkin verran rataseläimiä sekä esimerkiksi simpukoiden ja amerikansukasjalkaisen (Marenzelleria spp.) planktisia toukkavaiheita.

Acartia CIV_V, nauplius, CI_III, A. bifilosa F l=1800 Seili 20032002

 Acartia bifilosa hankajalkaisen eri kehitysvaiheita Seilistä kerätyssä näytteessä.  Kuva: All rights reserved, (c)Satu Zwerver, Zwerver.fi

Seilin lähivesien jäätyminen ei vain vaikeuta Nauvon ja Seilin välistä meriliikennettä vaan vaikuttaa muun muassa veden virtauksiin, ilman kanssa tapahtuvaan kaasujen vaihtoon kuin myös vedessä ja sen läheisyydessä eläviin eliöihin. Ei heti uskoisi, mutta jääpeitekin pitää sisällään piilevistä, panssarilevistä, sinilevistä, rataseläimistä, planktonäyriäisten toukkavaiheista ja bakteereista koostuvan eliöyhteisön. Nämä lajit elävät sekä jään reunoilla että sisällä ja yhteisön lajikokoonpano ja biomassa vaihtelevat jään muuttuessa talven mittaan.

Viime talvet ovat olleet Seilissä vähälumisia ja meri on ollut suuren osan talvesta avoin. Talven olosuhteilla on suuri merkitys kevään kannalta sillä jäät ja niiden lähtö vaikuttavat muun muassa jokien virtaumien ajoittumiseen ja voimakkuuteen,  kevätkukinnan alkamisen ajankohtaan ja lajikoostumukseen, ja edelleen esimerkiksi eläinplanktoniin ja kaloihin. Lämpimien talvien yleistyminen nähdään aikasarjoissa muun muassa kevään kasviplanktonkukinnan ja tiettyjen eläinplanktonlajien runsaushuippujen aikaistumisena.

Seili Päiväluoto UTU

Näytteenotto Päiväluodolla maaliskuussa 2006.

Hydrokopteri saapuu Seiliin, kuva: Veikko Rinne

Hydrokopteri saapuu Seiliin vuonna 1986. Kuva: (c) Veikko Rinne, juhlakirjasta Seili – Saaristomeren tutkimusta 50 vuotta

Older posts